Pharmacokinetic-pharmacodynamic modelling of the cardiovascular effects of drugs – method development and application to magnesium in sheep
نویسندگان
چکیده
BACKGROUND There have been few reports of pharmacokinetic models that have been linked to models of the cardiovascular system. Such models could predict the cardiovascular effects of a drug under a variety of circumstances. Limiting factors may be the lack of a suitably simple cardiovascular model, the difficulty in managing extensive cardiovascular data sets, and the lack of physiologically based pharmacokinetic models that can account for blood flow changes that may be caused by a drug. An approach for addressing these limitations is proposed, and illustrated using data on the cardiovascular effects of magnesium given intravenously to sheep. The cardiovascular model was based on compartments for venous and arterial blood. Blood flowed from arterial to venous compartments via a passive flow through a systemic vascular resistance. Blood flowed from venous to arterial via a pump (the heart-lung system), the pumping rate was governed by the venous pressure (Frank-Starling mechanism). Heart rate was controlled via the difference between arterial blood pressure and a set point (Baroreceptor control). Constraints were made to pressure-volume relationships, pressure-stroke volume relationships, and physical limits were imposed to produce plausible cardiac function curves and baseline cardiovascular variables. "Cardiovascular radar plots" were developed for concisely displaying the cardiovascular status. A recirculatory kinetic model of magnesium was developed that could account for the large changes in cardiac output caused by this drug. Arterial concentrations predicted by the kinetic model were linked to the systemic vascular resistance and venous compliance terms of the cardiovascular model. The kinetic-dynamic model based on a training data set (30 mmol over 2 min) was used to predict the results for a separate validation data set (30 mmol over 5 min). RESULTS The kinetic-dynamic model was able to describe the training data set. A recirculatory kinetic model was a good description of the acute kinetics of magnesium in sheep. The volume of distribution of magnesium in the lungs was 0.89 L, and in the body was 4.02 L. A permeability term (0.59 L min-1) described the distribution of magnesium into a deeper (probably intracellular) compartment. The final kinetic-dynamic model was able to predict the validation data set. The mean prediction error for the arterial magnesium concentrations, cardiac output and mean arterial blood pressure for the validation data set were 0.02, 3.0 and 6.1%, respectively. CONCLUSION The combination of a recirculatory model and a simple two-compartment cardiovascular model was able to describe and predict the kinetics and cardiovascular effects of magnesium in sheep.
منابع مشابه
Elderly's Medical Therapy Status
Studies show that the elderly are more prone to chronic diseases in comparison to other age groups. Medical treatment is very common in aged people. On average, every aged person uses 4.5 prescribed and 2.1 over the counter medicines. And every year they have 12 to 17 prescriptions. Indeed, medicines are mostly used in hospitals and geriatrics. (1) the most common used medicines are: analgesics...
متن کاملEffects of two new dihydropyridine derivatives, mepudipine and dibudipine, on isolated human internal mammary artery and rat left atrium
Among the present classes of calcium channel blockers, dihydropyridine derivatives are widely used in the therapy of hypertension, angina pectoris and the other cardiovascular diseases. Since the prototype of dihydropyridine derivatives, nifedipine, does not have the optimum pharmacokinetic and pharmacodynamic characteristics, several attempts have been made to synthesize other drugs in this ...
متن کاملPharmacokinetics and Pharmacodynamics of Gliclazide from Immediate and Modified Release Formulation Tablets in Rats
The objective of the study was to compare pharmacokinetic and pharmacodynamic parameters of gliclazide after administration of immediate (IR) and modified release (MR) tablets. The experiment included rats with both normoglyceamia and streptozocin (STZ)-induced hyperglyceamia. Several MR formulations were designed and in vitro drug release profile was assessed by a dissolution test. For the fur...
متن کاملPharmacokinetics and Pharmacodynamics of Gliclazide from Immediate and Modified Release Formulation Tablets in Rats
The objective of the study was to compare pharmacokinetic and pharmacodynamic parameters of gliclazide after administration of immediate (IR) and modified release (MR) tablets. The experiment included rats with both normoglyceamia and streptozocin (STZ)-induced hyperglyceamia. Several MR formulations were designed and in vitro drug release profile was assessed by a dissolution test. For the fur...
متن کاملBayesian Population Pharmacokinetic/Pharmacodynamic Modeling to Study the Effect on the Cardiovascular Syndrome of the QTc Interval Prolongation of Non-antiarrhythmic Drugs
Assessment of the propensity of non-antiarrhythmic drugs in prolonging QT/QTc interval is critical for the progression of compounds into clinical development. Given the similarities in QTc response between dogs and humans, dogs are often used in pre-clinical cardiovascular safety studies. The current regulatory guidelines are based on simple statistical analyses of QT data, thereby ignoring any...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Pharmacology
دوره 5 شماره
صفحات -
تاریخ انتشار 2005